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Abstract. Determining concentrations of cloud condensation nuclei (CCN) is one of the first steps in the chain in analysis of

cloud droplet formation, the direct microphysical link between aerosols and cloud droplets, a process key for aerosol-cloud

interactions (ACI). However, due to sparse coverage of in-situ measurements and difficulties associated with retrievals from

satellites, a global exploration of their magnitude, source, temporal and spatial distribution cannot be easily obtained. Thus, a

better representation of CCN is one of the goals for quantifying ACI processes and achieving uncertainty reduced estimates of5

their associated radiative forcing.

Here, we introduce a new CCN dataset which is derived based on aerosol mass mixing ratios from the latest Copernicus

Atmosphere Monitoring Service (CAMS) reanalysis (RA: EAC4) in a diagnostic model that uses CAMSRA aerosol properties

and a simplified kappa-Köhler framework suitable for global models. The emitted aerosols in CAMS are not only based on

input from emission inventories using aerosol observations, they also have a strong tie to satellite-retrieved aerosol optical10

depth (AOD) as this is assimilated as a constraining factor in the reanalysis. Furthermore, the reanalysis interpolates for cases

of poor or missing retrievals and thus allows for a full spatio-temporal quantification of CCN.

This paper illustrates the temporal and spatial structure of CCN and their abundance in the atmosphere. A brief evaluation

with ground based in-situ measurements demonstrates the improvement of the modeled CCN over the sole use of AOD as a

proxy for CCN.15

The CCN dataset, which is now freely available to users (Block, 2023), features 3-D CCN concentrations of global coverage

for various supersaturations and aerosol species covering the years from 2003 to 2021 with daily frequency. This dataset is one

of its kind as it offers lots of opportunities to be used for evaluation in models and in ACI studies.

1 Introduction

Processes of aerosol-cloud interactions (ACI) are still associated with large uncertainties in their contribution to climate forcing20

(Forster et al., 2021). One of the reasons for this is an insufficient determination of cloud condensation nuclei (CCN) concen-

trations which are a key element for ACI processes. A global exploration of their magnitude, source, temporal and spatial

distribution is challenging for various reasons. CCN can either be directly detected by in-situ measurements (e.g. using CCN
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counters) or estimated from related optical properties from remote sensing observations (e.g. from AERONET photometers).

However, airborne or ground-based observations provide only sparse information. For that reason observational ACI studies25

often rely on optical properties from satellite retrievals. The difficulty in these remote sensing applications is however the

difference between the size range relevant for light extinction and the size range important for CCN concentrations (Andreae,

2009). Nevertheless, aerosol optical properties such as aerosol optical depth (AOD) are commonly used as proxies for CCN

in ACI studies (e.g. Kaufman et al., 2005; Quaas et al., 2008, 2009; Grandey and Stier, 2010; Gryspeerdt and Stier, 2012;

Bellouin et al., 2013; Koren et al., 2014; Bellouin et al., 2020).30

Even though it has been shown that AOD is suitable as a first indicator of CCN concentrations (Andreae, 2009), it suffers

from various deficiencies which make it difficult to get a correct estimate of CCN. Firstly, AOD is a column integrated property

and does not provide a vertical resolution of CCN which is needed when interactions with clouds are studied (Stier, 2016; Quaas

et al., 2020). Further, the variability in the scale height of the vertical aerosol distribution and the existence of aerosol layers

aloft can introduce substantial variability in the relationship between column and surface properties (Jia et al., 2022). Secondly,35

AOD can only be retrieved in cloud-free conditions and mostly over dark surfaces, so that larger areas such as the Sahara, the

poles or areas with permanent cloud cover (e.g. stratocumulus decks) are not or insufficiently covered (e.g., Jia et al., 2021).

Therefore, as satellite retrieved AOD does not offer a complete temporal and spatial coverage of the Earth’s surface, sampling

biases are introduced in its statistics. Thirdly, AOD, and also related optical properties such as the aerosol index (AI), cannot

provide a specification of the involved aerosol components which matters to determine their suitability as CCN (e.g., Hasekamp40

et al., 2019). Fourthly, changes in relative humidity (RH) can result in pronounced variations of AOD due to aerosol swelling

effects, while the actual number of CCN remains constant (e.g., Quaas et al., 2009).

Even though various studies using AI instead of AOD found an improvement in the relationship to CCN (e.g. Nakajima et al.,

2001; Kapustin et al., 2006; Liu and Li, 2014; Gryspeerdt et al., 2017), the problems listed above still remain. Stier (2016) who

analysed the relationship between AOD and CCN using a fully self-consistent global model (ECHAM-HAM) found correlation45

coefficients between CCN at 0.2 % supersaturation and AOD to be below 0.5 for 71 %of the area of the globe, implying that

AOD variability explains only 25 % of the CCN variance. Correlations with alternative aerosol radiative properties proposed

as superior proxies of CCN such as fine mode aerosol optical depth, dry aerosol optical depth and aerosol index do not give

significant improvements according to this study. Hasekamp et al. (2019) retrieved CCN concentrations from the polarimetric

satellite POLDER-3 aerosol product and showed that there is not a simple scaling between AOD and CCN due to the impact of50

differing aerosol species. Furthermore, they demonstrated that the radiative forcing from ACIs is significantly underestimated

when AOD or AI are used as CCN proxies. Shinozuka et al. (2015) have examined the relationship between CCN and dry

extinction for a variety of airborne and ground-based observations. They also demonstrated that the uncertainty in the CCN-

AOD relationship arises not only from the uncertainty in the relationship between CCN and dry extinction, but also from the

humidity response of light extinction, the vertical profile, the horizontal-temporal variability and the AOD measurement error.55

These examples illustrate how important it is to account for the uncertainties related with CCN proxies and show the need for

new strategies.
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Several attempts exist to provide a more comprehensive picture on CCN related aerosol properties. Kinne et al. (2013)

introduced the MAC-v1 climatology for tropospheric aerosol, which describes optical properties such as AOD, SSA (single

scattering albedo) and fine-mode AOD fraction of tropospheric aerosols on monthly timescales and with global coverage.60

Aerosol mass concentrations from 24 European sites produced by various institutes using different techniques have been

comprehensively assessed in a European aerosol phenomenology, which analyses PM10 and PM2.5 mass concentrations, their

chemical composition and aerosol particle size distributions (Van Dingenen et al., 2004; Putaud et al., 2004, 2010). Asmi

et al. (2011) have analysed two years of harmonized aerosol number size distribution data from 24 European field monitoring

sites, focusing on near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm65

of dry particle diameter, that is relevant for CCN sized aerosols. Winker et al. (2013) focused more on the aerosol vertical

distribution, by constructing a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles from Caliop

lidar observations, thus introducing an initial global 3-D aerosol climatology. CALIPSO lidar retrievals also have been used

by Choudhury and Tesche (2022) who derived CCN concentrations using an algorithm that relies on the optical modelling

of CALIPSO aerosol microphysics. They even account for hygroscopicities and size distributions of five aerosol subtypes. A70

first validation of this CCN product with in-situ measurements illustrates the potential of CALIPSO for constructing a global

height-resolved CCN climatology.

A synthesis of in-situ CCN measurements is provided by Spracklen et al. (2011), who used observations reported in pub-

lished literature to produce a worldwide dataset of CCN, which is combined with the global model of aerosol processes

(GLOMAP Spracklen et al., 2005) to explore the contribution of carbonaceous combustion aerosol to CCN. Another CCN75

synthesis is provided by Paramonov et al. (2015), who used measurements from the European Integrated project on Aerosol

Cloud Climate and Air Quality interactions framework (EUCAARI) to analyse CCN activation and hygroscopic properties of

the atmospheric aerosols. Schmale et al. (2017, 2018) have produced a harmonized dataset of long-term CCN number con-

centrations, particle number size distributions and chemical composition from observatories located in different environments

worldwide, thus presenting yet another CCN synthesis.80

All of these studies taken together provide a sound foundation of CCN relevant aerosol properties, but most of them do not

refer to actual CCN concentrations at specific supersaturations but rather to proxies such as absorption or scattering coefficients

or aerosol numbers integrated over a certain size range, e.g. N100 referring to particles with diameters above 100 nm as being

relevant for activation. The ones who do measure actual CCN concentrations (CCN syntheses) usually don’t give a global

coverage nor a vertically resolved picture. Furthermore, it is challenging to use such syntheses e.g. for evaluation of GCMs as85

they are produced by different instruments which report at different supersaturation bands and involve different measurement

uncertainties.

In this study we suggest a new approach to resolve these issues by computing CCN from an aerosol reanalysis provided

by the European Centre for Medium-range Weather Forecast (ECMWF). In contrast to satellite retrievals, the atmospheric

model including aerosol and chemistry modules (here, ECMWF IFS) can simulate the full spatial and temporal distributions90

of aerosols. Deviations to real aerosol distributions and life cycles are reduced by constraining modelled estimates with ob-

servations (Kapsomenakis et al., 2022). This is done in the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis
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(Inness et al., 2019b), in which assimilated AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS, Levy

et al., 2013) is used to constrain the bulk total aerosol mass mixing ratio modelled with the IFS. Thus, a strong relationship

between observation and model is kept, while additional information on the vertical distribution, the horizontal and temporal95

coverage, the aerosol speciation and hygroscopic effects is provided by the model.

2 The CCN climatology computed from CAMS: Data provenance and structure

2.1 The CAMS model and assimilation system

The CAMS reanalysis (CAMSRA, Inness et al., 2019b) is the latest global aerosol reanalysis produced by the European

Centre for Medium-range Weather Forecast (ECMWF) within the framework of the European Copernicus program to provide100

information on aerosols, trace and greenhouse gases in the context of operational numerical weather prediction. It is based

on the Integrated Forecasting System (IFS) which has been extended by an aerosol scheme which mainly follows the aerosol

treatment in the french LMD-Z model (Boucher et al., 2002; Reddy et al., 2005) and was further modified by ECMWF during

the GEMS and MACC projects. This reanalysis profits from continuing upgrades in the modeling and assimilation system (see

Inness et al. (2019b) and therefore shows a smaller bias compared to observed AOD than the previous reanalyses.105

2.1.1 Aerosol treatment in the ECMWF IFS

CAMSRA was produced using the IFS (cycle 42r1) (Morcrette et al., 2009; Rémy et al., 2019) including a fully integrated

four-dimensional assimilation apparatus employed operationally at ECMWF (Benedetti et al., 2009). Details of the aerosol and

chemistry modules applied in CAMSRA can be found in Inness et al. (2019b) and Flemming et al. (2015).

The aerosol model uses a hybrid 1-moment bin-bulk scheme with 12 prognostic tracers which consist of 11 aerosol tracers110

and one tracer for gas-phase sulfur dioxide (SO2) precursor. These tracers are transported by the IFS vertical diffusion and

convection schemes and are advected by the semi-Lagrangian scheme. The simulated aerosol tracers are mass mixing ratios

of five aerosol species which are sulfate aerosol (SU), hydrophilic and hydrophobic black carbon (BC), hydrophilic and hy-

drophobic organic matter (OM), as well as mineral dust (DU) and sea salt (SS) each with three size dependent bins. The limits

of the three different size classes are chosen so that roughly 10, 20 and 70 % of the total mass of each aerosol type are in the115

various bins. Hydrophilic and hydrophobic components are prescribed via explicit emission fractions and ageing factors. The

different aerosol species are assumed to be externally mixed, meaning that the individual species are assumed to coexist in the

volume of air considered and to retain their individual optical and chemical characteristics, making it easier to trace them as

they undergo model dynamics.

Mineral dust and sea salt emissions are parameterised using near-surface wind speeds. Sea-salt production is calculated120

assuming an 80 % relative humidity, but only the dry mass is added to the respective bin and transported, thus no water is

transported via the aerosol and the mass is also not transferred between bins because of growth. However, wet density and
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radius are considered for all the size bins when dealing with dry deposition, sedimentation and radiation (Morcrette et al.,

2009). DU does not experience any aging or choating and is treated entirely as an insoluble aerosol.

Near real-time fire emissions from the Global Fire Assimilation System GFASv1.2 (Kaiser et al., 2012) are used to constrain125

black carbon emissions from wildfires and biomass burning (Kapsomenakis et al., 2022). Freshly emitted BC is partitioned

into 80 % hydrophobic and 20 % hydrophilic (Morcrette et al., 2009), while the partitioning of OM is set to 16 % hydrophobic

and 84 % hydrophilic (Bozzo et al., 2020). This setup provides optical properties representing an average of biomass and

anthropogenic organic carbon aerosols (Bozzo et al., 2020). Once emitted, both species experience ageing from hydrophobic

to hydrophilic with a time constant of 1.16 days (Morcrette et al., 2009).130

The sulfate type represents aerosols originating from sulfur emissions from industrial and fossil fuel combustion, biomass

burning and natural volcanic and biogenic sources (Bozzo et al., 2020). The sulfur cycle is represented with sulfur dioxide

(SO2) produced at or near the surface which is being transformed into sulfate aerosol (SO4, or SU) using temperature, relative

humidity and a prescribed, latitude dependent e-folding time scale. It should be noted here that SU emissions originating from

volcanic activities do actually represent a rather continuous background source of outgassing volcanoes rather than explicit135

volcanic eruptions. It is further stated by Inness et al. (2019b) and Kapsomenakis et al. (2022) that there are some hotspots

of increased AOD bias around outgassing volcanoes, in particular around Mauna Loa and Altzomoni near Mexico City. This

might result from erroneous model treatment of diffuse volcanic emissions which enhance SU at these locations. Therefore, we

follow their recommendation to exclude these two sites as unrepresentative in our analysis presented in this paper. However, in

the published dataset all data are included as is.140

Additionally to the emission of aerosols, CAMS includes emissions of precursors such as natural emissions for nitrogen

dioxide (NO2), dimethyl sulfate (DMS) and, as already stated above, sulfur dioxide (SO2). Biogenic emissions are done as

monthly means for volatile organic compounds (VOC) which are calculated offline by the MEGAN2.1 model (Guenther et al.,

2006) using MERRA-2 reanalysed meteorology following Sindelarova et al. (2014). Anthropogenic emissions from the MAC-

City inventory (Granier et al., 2011), including an upgrade for CO emissions (Stein et al., 2014), covers the period 1960–2010145

and is updated for subsequent years using the representative concentration pathway (RCP) version 8.5, the "business-as-usual"

scenario. Anthropogenic secondary organic aerosol (SOA) production has also been implemented in CAMS, proportional to

MACCity CO emissions as suggested by Spracklen et al. (2011). However, nitrate aerosols are not yet included in the aerosol

scheme. The missing nitrate is likely to cause an underestimation of total aerosol in the forecast model in regions where nitrate

would be a significant component, however in the reanalysis the total aerosol is corrected by the assimilation of total AOD150

observations (Inness et al., 2019b). Further it should be noted that only aerosol emissions from the surface and within the

troposphere are considered in the model, a stratospheric contribution is not included.

The removal of aerosols is modelled by several processes: by dry deposition including the turbulent transfer to the surface

and gravitational settling, or by wet deposition including rainout and washout of aerosol particles in and below the clouds.

Wet deposition is modelled separately for convective and large-scale precipitation. The fraction of aerosol included in droplets155

through dissolution or impaction is set to 0.7 for all CCN relevant aerosol species (Morcrette et al., 2009).
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2.1.2 Aerosol confinement by assimilated AOD

The IFS assimilation apparatus has been extended to include atmospheric tracers among the control variables. A control variable

is used to optimize the cost function which measures the distance between observations and their model equivalent. It is

minimized in a variational assimilation approach which is described by Benedetti et al. (2009).160

The observation relevant to constrain aerosol mass is the AOD. More specifically, it is the dark target AOD at 0.55 µm from

the MODerate resolution Imaging Spectroradiometer (MODIS collection 6 on board of the Aqua and Terra satellites, Remer

et al., 2005; Levy et al., 2013, 2018), along with the Advanced Along-Track Scanning Radiometer (AATSR) AOD onboard of

the ENVISAT satellite (Popp et al., 2016) which are assimilated in the IFS. However, AOD is not retrieved in pixels identified

as cloudy, nor at high latitudes where the solar illumination is small (thus assimilation is limited to the regions between 70◦ S165

and 70◦ N), nor over bright surfaces (snow covered high latitudes or the desert areas of Sahara and Australia) due to the impact

of the surface reflectance on retrieval accuracy. Other factors affecting accuracy such as cloud contamination, assumptions

about the aerosol types and size distribution, near-surface wind speed, radiative transfer biases, and instrumental uncertainties

are also taken into account (Benedetti et al., 2009) and were reviewed previously by Zhang and Reid (2006).

For the calculation of the model equivalent AOD, the relative humidity is first computed from the model temperature,170

pressure and specific humidity. The appropriate mass extinction coefficients are then retrieved from a look-up table for the

wavelength of interest (here, 550 nm), multiplied by the vertically integrated aerosol mass at the corresponding observation

location. The total AOD τ at the respective wavelength λ is then calculated as the sum of the single-species AODs (Benedetti

et al., 2009).

Total and component AODs are diagnosed at 17 MODIS correspondent wavelengths ranging from 0.34 to 2.13 µm by using175

precomputed optical properties, such as mass extinction coefficient αe, single scattering albedo ω, and asymmetry parameter ϱ

(Morcrette et al., 2009). The optical characteristics of the aerosols are computed using Mie theory (Ackerman and Toon, 1981),

and are then integrated over the physical size range using the model’s prescribed lognormal distributions which are fixed for

each tracer (Benedetti et al., 2009). Sea salt and dust AODs are obtained by summing over the individual bin contributions.

Optical properties of hygroscopic aerosols are parameterized as a function of relative humidity accounting for the respective180

growth factors listed by Bozzo et al. (2020).

The model control variable which is modified according to the outcome of the data assimilation, is the total aerosol mass

mixing ratio, defined as the sum of all aerosol species. At each iteration of the minimization, the increments in the total mass

mixing ratio derived from the assimilation of MODIS AOD have to be redistributed into the mixing ratios of the single species.

Thereby each aerosol component is corrected in proportion of its original contribution to the total aerosol mass, meaning that185

the modelled speciation is not changed by the assimilation. It should be noted here that the assimilation modifies the modelled

field not only at the point of observation but also around it. Regions with no observations because of cloudiness or high surface

reflectance will still be improved by the data assimilation, but to a lesser extent than regions closer to the location of assimilated

data (Benedetti et al., 2009).

6

https://doi.org/10.5194/essd-2023-172
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



2.2 Computation of CCN with a modified kappa-Köhler approach190

Using the CAMS reanalysis data (CAMSRA: Inness et al., 2019a), we have so far produced a 19 year long global CCN

climatology (Block, 2023) available from 2003 to 2021 as daily averages on a Gaussian grid at a resolution of 0.75◦ × 0.75◦

(T255) and 60 vertical levels, corresponding to the grid in the reanalysis. Apart from the CAMSRA data, which is available

every 3 hours, CCN are currently only computed once a day at 00:00 UTC. The data comprises 3-D fields of total CCN

computed for six different supersaturations (s: 0.1, 0.2, 0.4, 0.6, 0.8 and 1 %) and 3-D CCN fields containing CCN from SU,195

BC, OM and three size bins of SS computed for two supersaturations (s: 0.02 % and 0.8 %) comprising additional aerosol

information in the lower and upper supersaturation range, respectively. The current choice of data frequency, resolution and

variable dependencies such as supersaturation is made regarding general interest and suitability as well as file size, data storage

and computational costs. This dataset is publicly available and offers the opportunity to be used for evaluation of GCMs/ESMs

and in studies of aerosol-cloud interactions.200

The CCN are calculated diagnostically in a box model, which once was created to be used for HadGEM3-UKCA (Davies

et al., 2005; Mann et al., 2010; Hewitt et al., 2011; O’Connor et al., 2014; West et al., 2014), which was modified so that it also

uses modules from a ECHAM5-HAM (Stier et al., 2005) and with updates to the ECHAM6 version (Stevens et al., 2013).

The model reads temperature, pressure, specific humidity and aerosol mass mixing ratios from the CAMS reanalysis. From

the aerosol particle mass mixing ratio, qp and air density, ρa, the particle mass concentration per volume is computed, ρp =205

qpρa, and from this the mass per aerosol particle mp is computed as

mp =
4
3
πρp (r0β)3 with β = exp(1.5 · ln2 σg), (1)

using the Hatch-Choate conversion (Hinds, 1998) which relates the count median radius r0 to the mass-averaged radius for the

prescribed lognormal size distribution with geometric standard deviation σg .

The total aerosol number concentration Na is then obtained by dividing ρp by the mass per aerosol particle. The resulting210

lognormal number distribution for an aerosol species k can be written as

Na,k(r) = Na,k ·
1√

2π · lnσg,k

· exp
[
− ln2(r/r0,k)

2 ln2 σg,k

]
. (2)

In order to stay consistent with the IFS model, we have chosen to use the given size distribution parameters used by the

IFS to convert between aerosol optical properties and AODs (Benedetti et al., 2009). That way, the proportionality between

AOD and the resulting CCN is kept. Any improvement the resulting CCN might reveal over AOD can then only arise from215

the vertical distribution and the simulated species contribution. The relevant parameters of the size distribution and aerosol

properties used are listed in Table 1. Please note that only hydrophilic aerosol species are used for further processing. Even

though the total aerosol number concentration is computed with all 11 aerosol tracers, CCN concentrations result only from

hydrophilic BC and OM components in addition to SU and SS.

220

7

https://doi.org/10.5194/essd-2023-172
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 1. Hydrophilic aerosol properties used in this study for CCN computation. Size distribution properties are from Bozzo et al. (2020),

and references therein. Given are the size bins of sphere radii [µm], the count median radii r0 [µm], the geometric standard deviations σg

and the dry aerosol densities ρp [g/cm3] which are used for the lognormal size distributions. Values are for the dry aerosol a part from sea

salt which is given at 80% RH. Kappa values are taken from ECHAM-HAM2 (Zhang et al., 2012) in reference to Petters and Kreidenweis

(2007), with changes for sea salt according to Zieger et al. (2017).

aerosol size bin [µm] r0 [µm] σg ρp [g/cm3] κ

SS small 0.03 - 0.5 0.1992 1.9 1.183 1.1

SS medium 0.5 - 5.0 1.992 2.0 1.183 1.1

SS large 5.0 - 20 1.992 2.0 1.183 1.1

OM 0.005 - 20 0.0212 2.24 1.8 0.06

BC 0.005 - 0.5 0.0118 2.0 1.0 0.06

SU 0.005 - 20 0.0355 2.0 1.76 0.6

Once the number concentration is computed for each aerosol species, we apply a modified kappa-Köhler theory to compute

how many aerosols act as CCN at a specific supersaturation. Even though Köhler models with increased complexity are avail-

able (e.g. Lowe et al. (2016) or developments summarized in Kreidenweis et al. (2019)) to account for various deficiencies in

the traditional Köhler theory (Köhler, 1936), we have chosen a rather simplified version to be consistent with the representa-

tion of Köhler theory in general circulation model (GCM) and Earth System Model (ESM) which need to be computationally225

feasible.

In the kappa-Köhler theory from Petters and Kreidenweis (2007), the relationship between the particle dry diameter Dd and

CCN activity or hygroscopicity is derived using a single hygroscopicity parameter κ which represents a quantitative measure

of aerosol water uptake characteristics and CCN activity. Values of κ for specific compounds, or for arbitrary mixtures, were

determined experimentally by fitting CCN activity or hygroscopic growth factor data. κ values used in this study are taken230

from the literature and are listed in Table 1. Since we deal with external mixtures, each aerosol species has its own κ value.

Following Petters and Kreidenweis (2007), the saturation ratio S of a droplet with wet diameter Dw can be described as

S(Dw) =
D3

w −Dd
3

D3
w −Dd

3(1−κ)
· exp

(
4σw/aMw

RTρwDw

)
(3)

with the surface tension parameter σw/a, the universal gas constant R, temperature T , the molar mass of water Mw and the

water density ρw. This relation is valid over the entire range of relative humidity and solution hygroscopicity (Petters and235

Kreidenweis, 2007). The first term is the solute term, describing the reduction of the water equilibrium vapor pressure over

the solution in comparison to that over pure water and is described by Raoult’s law. The second term is the curvature term

described by the Kelvin equation which relates the equilibrium water vapor pressure over a pure water droplet of diameter Dw

to the equilibrium vapor pressure over a flat surface at the same temperature (Seinfeld and Pandis, 2006).
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We now modify this relation as in Pöhlker et al. (2023) by considering only slightly supersaturated conditions such as in240

warm clouds, typically with supersaturations 0.1% < s < 1.5% (Spracklen et al., 2011). Assuming supersaturation s≪ 1 we

can approximate lnS = ln(1 + s)≈ s, and with assuming Dd ≪Dw, Eq. 3 becomes

lnS ≈ s =
A

Dw
−κ

Dd
3

D3
w

with A =
4σw/aMw

RTρw
. (4)

This simplifies the original kappa-Köhler framework because it is not necessary to compute a hygroscopic diameter growth

factor to account for the difference of Dw−Dd. For detailed derivation and comparison to the original Köhler equation (Köh-245

ler, 1936), please see Appendix A.

For any aerosol of dry diameter Dd, we can find the maximum (dlnS/dDw = ds/dDw = 0) at a critical wet diameter Dc,w

of

Dc,w =

√
3κD3

d

A
(5)250

which marks the onset of cloud drop formation. Inserting Dc,w for Dw in Eq. 4, the corresponding critical supersaturation sc

is

lnSc ≈ sc =

√
4A3

27κD3
d

=
2√
κ

(
A

3Dd

) 3
2

or with setting Dd = 2rd , (6)

lnSc ≈ sc =
2√
κ

(
Ar

3rd

) 3
2

with Ar =
2σw/aMw

RTρw
. (7)

The critical supersaturation of the smallest aerosol particle in an aerosol population being activated is equal to the ambient255

or maximum supersaturation smax of an air parcel rising adiabatically at uniform speed (Abdul-Razzak et al., 1998). Its critical

dry radius rc,d is then related to smax as

smax =
2√
κ
·
(

Ar

3rc,d

) 3
2

. (8)

Particles smaller than rc,d require a higher sc than smax and are not activated. Particles larger than rc,d require a smaller sc than

smax and activate to form cloud droplets. Thus, CCN can be described as potential cloud droplet numbers (CDNC) as they are260

computed at a given supersaturation, meaning the ambient or maximum supersaturation is prescribed. For a given set of smax,

as we prescribe them in this dataset, the corresponding dry critical radii is computed by inverting Eq. 8.

The number concentration of activated aerosols is the number concentration of aerosols larger than the size of the smallest

activated aerosol, thus with a dry critical radius of rc,d. The calculation of the activated number fraction from the dry critical
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radii is done by transforming the individual log-normal distributions to an error function (Ghan et al., 1993; Khvorostyanov265

and Curry, 2006) which is then computed cumulatively following (Vignati et al., 2004).

3 Results and Discussion

3.1 Total CCN concentration derived from CAMS

Figure 1 shows the global distribution of total CCN load [m−2] for different values of supersaturations over the troposphere, as

well as the vertical distribution of zonal mean CCN concentrations [cm−3]. The CCN load is determined by the emission rate,270

the scavenging rate and advection. Overall, the industrial and developing countries in the northern hemisphere show high CCN

loads, which are maximum at a latitude of ∼ 30◦ N, originating especially from polluted regions over South-East Asia, with

peaks over China and northern India. Polluted regions in the southern hemisphere, especially those in South America (Brazil’s

Amazon Rainforest) and Africa (Congo Basin), become better visible with larger supersaturations.

CCN concentrations decrease towards the poles where aerosol emission or advection is reduced. Regions with especially low275

aerosol loads apart from the poles are western Australia, the Weddel Sea and Greenland. Only a slight reduction of CCN by

scavenging (Figure 1, right panels) can be found for this annual average in the inter-tropical convergence zone (ITCZ) which is

determined by convective precipitation. The vertical distribution reveals that CCN concentration stay mostly in the boundary

layer and decrease with height. The larger the supersaturation becomes the more CCN are available in higher altitudes. This

agrees with findings of Watson-Parris et al. (2019) who analyzed the vertical distribution of global aerosol with in situ aircraft280

measurements. Furthermore, it can be seen that the Arctic is much more connected to NH aerosol emissions, while the Antarctic

shows concentrations which are decoupled from SH emissions and advections, which is due to the West Wind Drift.

Figure 2 shows the zonal and meridional means of seasonally averaged CCN load at 0.2 % supersaturation. The seasonal,

longitudinal and latitudinal variation would have been similar with other chosen values of supersaturations. The total CCN load

clearly shows a seasonal cycle, with larger loads during spring and summer within the respective hemisphere. This originates285

mostly from natural seasonal variations in OM. However, the seasonal variability is not all naturally driven, but also anthro-

pogenically. The meridional mean CCN load reveals a strong contribution from SU leading to high aerosol concentrations

over China (∼ 120◦ E) all year long. Otherwise, we can find the seasonal variation from the top panel being reflected in the

bottom panel, with higher concentrations in spring and summer originating from the OM variations over the NH landmasses.

Especially low aerosol concentrations and only little seasonal dependence can be found over the East Pacific (∼ 40◦ W).290

Figure 3 shows the anomalies of total CCN load at 0.2 % supersaturation for different bands of latitudes. It reveals specific

events when the CCN load was particularly high or low compared to the multi-year monthly mean. We have identified three

of these spikes (numbered in grey) to show (1) the severe Siberian Taiga Fires in Russia in 2003, (2) the 2020 Australian

Bushfires and (3) the very low CCN concentrations (especially in NH) during the summer months in 2020 and 2021, which295

where in parts associated with the COVID-19 confinements in countries all over the world. These low CCN events alternate

with events of high CCN abundance due to the wildfires in California in 2020 and in British Columbia in 2021. We can see
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Figure 1. CCN load [×109 m−2] of the lowermost 10 km (left panel) and corresponding zonal mean CCN concentration over height [cm−3]

(right panel) for supersaturations ranging from s = 0.2 % (top) to s = 1.0 % (bottom). CCN are averaged in time for the year 2007, with Mauna

Loa and Mexico City being excluded. Please note that the color scale for the left panel is logarithmic while it is not for the right panel.

here that wildfires and biomass burning events show a major contribution to total CCN and that these events are well captured

by the CAMS assimilation. In contrast, volcanic eruptions, e.g. the Holuhraun eruption on Iceland in 2014 (Haghighatnasab

et al., 2022; Malavelle et al., 2017), have not been captured by the CAMS assimilation system nor are they modelled by the300

IFS as plume injections of aerosols and therefore they cannot be found in CCN load anomalies. Furthermore, we find that

the time evolution of global mean CCN abundance (not plotted here) shows a significant negative trend, for s = 0.2 % it is

≈−3 · 109 CCN m−2year−1 (on 95 % significance level), which originates from latitudes between 30◦ N and 60◦ N (here the

trend is ≈−12 · 109 CCN m−2year−1 for s = 0.2 %), while other latitudes do not show significant trends. This is reflected in

trends of CCN load anomalies. The magnitude and/or occurrence of positive anomalies in the 30◦−60◦ N latitudinal band tend305
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Figure 2. CCN load [×109 m−2] of the lowermost 10 km at s = 0.2 %, averaged over longitudes (top) and over latitudes (bottom). CCN are

averaged over seasons (SON, JJA, MAM, DJF) for the years 2003-2021, with Mauna Loa and Mexico City being excluded.

to decrease, while they are increasing in absolute terms for negative anomalies as can be seen especially for the last decade in

Figure 3. The values of this decrease differ for the various supersaturations but the tendencies are robust. This behavior is not

surprising as anthropogenic aerosol emissions have declined in most parts of the world following air quality policies (Szopa

et al., 2021). Emissions of anthropogenic primary aerosol (mostly SU) and aerosol precursors (mostly SO2) have decreased in

the last 20 years, and these trends are reflected in observations of aerosol abundance (Quaas et al., 2022). SU emissions were310

mostly declining since 2000, with substantial declines over North America and Europe in particular. Declining trends can also

be found over remote oceanic regions, where ship emissions have declined since 2010 following emission control protocols.

Over China, the anthropogenic aerosol emissions have been increasing until around 2010, and decreasing thereafter. Over
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https://doi.org/10.5194/essd-2023-172
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 3. Anomalies of CCN load [×109 m−2] over the entire atmospheric depth at 0.2 % supersaturation, averaged over 4 latitudional bands

between 60◦ S and 60◦ N. The monthly mean anomaly is computed by subtracting the multi-year monthly mean over the entire timeseries

from 2003 to 2021, with Mauna Loa and Mexico City being excluded. Numbers in grey illustrate specific showcase events.

Southeast Asia, including India, and also over parts of Africa, anthropogenic emissions showed increasing trends throughout

the period 2000–2019. OC and BC emissions also show increasing trends which are more widespread, especially over more315

regions in East Asia, Africa, and also South America. These trends are mostly reflected in CAMS and therefore appear in CCN

abundance.

3.2 CCN species contributions derived from CAMS

Figure 4 shows the global distributions of the four aerosol species contributing to total CCN for s = 0.2% which is presented

in previous Figures. The plotted CCN are concentrations [cm−3] near the surface, taken from the lowest model level. Therefore,320

in contrast to CCN load, emissions play a larger role than advection or aerosol physical processes. The SU CCN pattern shows

a clear inter-hemispheric gradient, presenting most of the industrial and therefore SU emissions over the NH continents, with

the largest emissions over China. Total CCN concentrations closely follow the distribution of sulfate since it has by far the

highest concentration.

OM and BC CCN patterns are similar as both species are linked to the combustion of fossil fuel, biofuel and biomass. OM325

emissions additionally originate from terrestrial and marine biogenic ecosystems. They both show high concentrations over

China, northern India, and the tropical rain forests. OM has larger amounts of CCN and is more spread out than BC which,

apart from additional sources, might be due to the different hydrophilic fractions at emission. Even if we would assume abso-

lute equal and constant emission rates of BC and OM, there is still 84 % hydrophilic OM but only 20 % hydrophilic BC which

can act as CCN. The largest amount of SS CCN can be found over the Southern Ocean and along the storm tracks in the North330
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Figure 4. Near-surface CCN concentrations [cm−3] at 0.2 % supersaturation of the 4 contributing species a) sea salt (sum of 3 size groups),

b) hydrophilic organic matter, c) hydrophilic black carbon and d) sulfate. CCN are averaged in time for the year 2007, with Mauna Loa and

Mexico City being excluded. Please note the different scales on the color bars.

Atlantic. SS CCN are noticeable in large storms, when surface wind speed are high and vertical mixing is enhanced.

Figure 5 shows the contribution of the four aerosol species to the total amount of CCN at 0.2 % supersaturation. The total

CCN amount is mostly divided by contributions from SU and OM. SU dominates worldwide, except for the tropical rainforest

areas and parts of Asia where OM is prevalent. At high latitudes SU and OM contributions often balance each other. Contribu-335

tions from SS are negligible except over the Southern Ocean between 30◦ and 60◦ S. Even though SS is highly soluble and has

the largest κ value, it is a big aerosol, associated with a large aerosol mass but low aerosol numbers. BC has low contributions

even in regions of heavy biomass burning. This is due to the consideration of only 20 % as hydrophilic, and due to the smallest

BC particle size, which requires larger supersaturations to activate in comparison to the other aerosol components.

Figure 6 shows the variability of each CCN species over the year. For a better comparison, we have normalized the near-340

surface monthly mean concentrations taken from the entire time period 2003 - 2021 by dividing them by their respective time

mean. This means, values of CCN variability cannot be compared between species. In the global mean, SU CCN show almost

no variation over the year because NH and SH variabilities cancel each other. In each hemisphere, SU CCN are higher in the

respective hemisphere’s summer than in the wintertime. Because SU is a dominant contributor to total CCN, this means that

total CCN loads shift between hemispheres over the year with higher concentrations in the NH during boreal summer (JJA)345
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Figure 5. Contribution percentages of the four CCN aerosol species sea salt (SS, sum of 3 size groups), hydrophilic organic matter (OM),

hydrophilic black carbon (BC) and sulfate (SU) at s = 0.2 % averaged for the year 2007, with Mauna Loa and Mexico City being excluded.

Each pie-chart is produced of a 15◦ × 15◦ average from near-surface data. Please note that the pie-charts do not reflect total CCN amount.

and higher concentrations in the SH during austral summer (DJF). Global mean OM and BC CCN seem to peak twice during

the year, however the peak in spring originates from larger emissions in the NH while the peak in autumn originates from

increased emissions in the SH. SS concentrations are highest in the wintertime months over the NH and in the summer months

over the SH, which is due to enhanced wind speeds in these months. In the global mean, these variations cancel each other.

Overall, each CCN species varies most naturally over the year and no larger anthropogenic impact on these variations can be350

found.

3.3 CCN validation

CAMS derived CCN are briefly evaluated here with quality assured data from the Atmospheric Radiation Measurement (ARM)

network which were available within the time frame of CAMS (and MACC, for comparison see Block (2018)) and originate

from the same instrument for better comparison. The ARM surface sites used here are located in very different aerosol en-355

vironments ranging from remote to highly polluted. Users are encouraged to extent this first validation with observations or

retrievals of their choice. CCN concentrations are measured at several supersaturations using a Droplet Measurement Technolo-

gies (DMT) single-column CCN counter (Roberts and Nenes, 2005). The instrument steps through several supersaturations in

a pyramid like profile with 7 intervals (0.1, 0.2, 0.4, 0.6, 0.9, 1.1 and 1.2 %) in a cycle of 30 min with 5 min at each setting. The

different supersaturations are obtained by variation of the chamber wall temperature and are calibrated using salt aerosol (static360

calibration). Additionally, supersaturations are also calculated using a heat transfer and fluid dynamics flow model (Lance et al.,
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Figure 6. Relative variability of near-surface CCN species at 0.2 % supersaturation. Multi-year (2003-2021) monthly means of CCN con-

centrations are divided by the time mean to produce a normalized variability for each of the 4 contributing species: sea salt (SS, sum of 3

size groups), hydrophilic organic matter (OM), hydrophilic black carbon (BC) and sulfate (SU). Shown are averages over a) the entire globe,

b) the northern hemisphere and c) the southern hemisphere, all with Mauna Loa and Mexico City being excluded.

2006) which are more reliable than the static calibrated ones (Shi et al., 2013). The instrument calibration and uncertainties

involved are discussed in Rose et al. (2008). Spracklen et al. (2011) analyzed extensive CCN observations and found a range

of uncertainties from 5-40 % depending on CCN concentration, supersaturation and the type of CCN instrument used. Their

findings suggest a relative uncertainty of ±40% and a minimum absolute uncertainty of ±20 cm−3, which is assumed here as365

well.

We have chosen to use the Aerosol Observing System Cloud Condensation Nuclei Average (AOSCCNAVG) value-added

product (VAP) (Shi et al., 2013) because it consolidates the relevant CCN parameters into a single file and averages the data

over the 5-minute integration time for each s value. Since the first minute of each s setting is unstable in terms of temperatures

and the s value overshoots the setpoint, only the last four minutes are taken into account.370

Table 2. Atmospheric Radiation Measurement (ARM) network sites and measurement periods used for CCN evaluation.

Site ID Site/Campaign Environment Dataset Time period (month/year)

SGP Southern Great Plains: Central Facility, Lam-

ont, OK, USA

rural C1 01/2011-12/2012

PVC Cape Cod: Highland Center, Cape Cod, MA,

USA

coastal M1 07-12/2012

PGH Ganges Valley: ARIES Observatory, Nainital,

Uttarkhand, India

mountainious M1 06/2011-03/2012

GRW Graciosa Island: Azores, Portugal marine M1 04/2009-12/2010

MAG MAGIC: Los Angeles, CA to Honolulu, HI,

USA - container ship Horizon Spirit

marine M1 10-12/2012
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(a) CAMS vs. ARM CCN data near the surface. Average (colored cross) and standard

deviations (vertical and horizontal bar) are computed from logarithmic values for each

station.

(b) CAMS CCN species contribu-

tions at ARM sites, corresponding to

panel (a).

Figure 7. Validation of CAMS CCN concentration with ARM surface site data for 0.4 % supersaturation. The ARM stations are listed in

Table 2.

The AOSCCNAVG VAP produces two output data streams, from which we have chosen to use the c2 output produced from

the mentor-edited b1 level input datastreams. The data are taken from four land stations. Additionally we have taken AOS CCN

data (not VAP) from the Marine ARM GPCI Investigation of Clouds (MAGIC) project which is a ship campaign in the Pacific.

The sites, datasets and measurement times used, are listed in Table 2.

We use daily means of quality-checked CCN measurements and ensured that each day comprises statistically stable values375

which can be compared to CAMS derived CCN once a day. The comparison to CAMS CCN is done for a single supersaturation

at 0.4 % for reasons of convenience. For detailed description of data handling, please see Appendix B.

The evaluation of the CAMS reanalysis CCN0.4 with ARM data (Fig. 7, (a)) reveals a good agreement considering the large

range of magnitudes. A share of 96.5 % of the data lies within a factor of 10. As expected, the lowest CCN concentrations are

found for clean marine conditions (GRW and MAG), which are followed by conditions with medium aerosol concentrations380

(SGP and PVC). The spread of data points is largest for MAG site (see NRMSE in Table 3) which might be due to the low

amount of observed data. The Indian site (PGH), which is found to be in one of the most polluted regions in the world, shows by

far the highest model CCN concentrations. The CCN species contributions of the individual stations, also presented in Fig. 7,
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Figure 8. CAMS vs. ARM CCN probability density functions, for CCN taken at 0.4 % Ssat near the surface. The PDFs are shown for the

the ARM sites listed in Table 2, with all stations taken together in Panel f). CAMS data are plotted in blue and ARM data in red. The vertical

lines indicate the medians (solid lines) and the interquartile range (dashed), with one line at the 25th, and the other at the 75th percentile, of

each distribution.

(b), reveals almost balanced contributions from sulfate and organic matter for all stations, except for PGH where OM is by far

the most dominant species. In comparison, sea salt concentrations are negligible, even for marine sites.385

As can be seen from Figure 8, the simulated total CCN mostly overestimate the observations (except for SGP) in terms

of median and interquartile range (except for PGH). The results are summarized in Table 3. However, taking into account

18

https://doi.org/10.5194/essd-2023-172
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 3. CCN evaluation with ARM data, given the measurement uncertainties σm in %. The probability distribution characteristics as

shown in Fig. 8 are given by the median Q50, the 25th percentile Q25 and the 75th percentile Q75 of the CCN concentrations in [cm−3].

The bias(Q50) is a factor computed by dividing the CAMS CCN Q50 by the ARM Q50, regarding measurement uncertainties in square

brackets, while bias(IQR) is the bias of the interquartile range computed in the same manner. The last column indicates the normalized

root mean square error (NRMSE) in %. It is calculated from the root mean squared error of logarithmic values, divided by log(Q50) of the

observations.

Site ID days data σm [%] Q25 [cm−3] Q50 [cm−3] Q75 [cm−3] bias(Q50) bias(IQR) NRMSE [%]

MAG 23
ARM 40.0 48±19 102±41 330±132

1.9 [1.36,3.16] 3.44 [1.47,8.02] 31.7
CAMS 111 194 2595

GRW 420
ARM 40.0 182±73 244±98 323±129

1.19 [0.85,1.99] 1.99 [0.85,4.64] 16.8
CAMS 147 290 518

PVC 64
ARM 40.0 427±171 696±278 1049±420

1.66 [1.18,2.76] 1.12 [0.48,2.60] 11.8
CAMS 747 1151 2048

SGP 547
ARM 40.0 416±166 699±280 1089±436

0.93 [0.67,1.55] 1.45 [0.62,3.37] 14.9
CAMS 332 652 1257

PGH 252
ARM 40.0 865±346 1440±576 1927±771

5.0 [3.57,8.34] 0.89 [0.38,2.08] 22.8
CAMS 4237 7205 8421

All 1306
ARM 40.0 270±108 509±204 1059±424

1.29 [0.92,2.16] 1.86 [0.8,4.34] 18.1
CAMS 268 659 1954

the measurement uncertainties (values given in square brackets) the CCN retrieved from the CAMS reanalysis are reasonable

within the range of the measurements. Only the bias for PGH is out of bounds, introducing a spike in the CCN distribution

which is outside the range of observations (Figure 8, f). As stated in Inness et al. (2019b), some improvements of CAMSRA in390

comparison to the previous version MACC (Inness et al., 2013; Mangold et al., 2011; Benedetti et al., 2009; Morcrette et al.,

2009) are accompanied by a large increase in organic matter in polluted regions from the introduction of a representation of

anthropogenic SOA. It could be argued here, that this is the cause for the large deviation found at the PGH site. It is unclear to

what extent this erroneous overestimation of CCN concerns other heavily polluted areas and it needs further validation to find

the source of this feature. Because of this, the overall bias of the log-normal distributions of all the stations taken together is395

+ 29 %, with an overestimation in variability by 86 %. Note, that even if PGH showed a perfect fit (CCN divided by 5), still the

overall bias overestimation would be +21% with an overestimation in variability of 23 %. This shows, that the overestimation

at PGH mainly concerns the width of the CCN number distribution.

The correlation coefficients (Table 4) clearly show the improvement of CAMS CCN over AOD as a proxy for CCN (Andreae,

2009), when compared to near-surface CCN measurements. The overall correlation coefficient increases by a factor of 1.9 when400
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using CAMS CCN instead of AOD as a proxy for observed CCN. The strongest improvements are found for the GRW station. A

study of Logan et al. (2014) shows that the Azores (GRW site) experiences a range of aerosol conditions with mixtures of dust,

pollution and smoke. They found rather weak correlations between aerosol loading and CCN due to mineral dust influences,

while events with sulfate content within volcanic ash and pollution particles showed strong relationship with CCN. Regarding

their findings, one reason for the improvement of R might be related to the fact that DU is neglected here as potential CCN405

due to its insoluble character, even though this is debatable regarding the findings of Karydis et al. (2011) who argue that even

freshly emitted dust lacking any soluble material can still act as a good CCN. Another advantage of CAMS derived CCN is the

vertical resolution that enables filtering aerosol layers. e.g. from long-range transport. These layers can increase column AOD

without actually increasing CCN at the relevant height (in this case near the surface), leading to lower correlations. However,

the highest correlations are found for the remote marine site (MAG), where MODIS AOD is supposed to work best (Remer410

et al., 2005). Still, even for this site the correlation to observations by CAMS CCN is slightly enhanced in comparison to AOD.

Since the assimilation of AOD is limited to the regions between 70◦ S and 70◦ N, CAMS retrieved CCN might deviate more

from observations in the polar regions since they are not constrained and we suggest to only use CCN data outside of the polar

circles.

The general correlation of R = 0.71 shows that the reanalysis CCN fits well to the surface observations. The results show415

that the correlation coefficient to measured CCN almost doubles when using CCN from the reanalysis instead of AOD. This

results from the resolved vertical distribution and the aerosol speciation in the CAMS reanalysis.

Table 4. CCN-AOD correlation coefficients. CCN corresponds to CCN(s = 0.4%), either observed (CCNARM) or from the reanalysis

(CCNCAMS). AODMODIS is the "Dark_Target_Deep_Blue_Optical_Depth_550_Combined" as described in Levy et al. (2013), retrieved

from MODIS (collection 6 on board of Aqua), available daily on a 1 x 1◦ grid (MYD08_D3 data product), used in here from 2003 - 2014.

The Pearson correlation coefficients R are computed using the logarithm of data values for which all three datasets were available - in total

748 points. The last row presents the results if all the stations were taken together as in Fig. 8, f.

Site ID R (CCNCAMS vs. CCNARM) R (AODMODIS vs. CCNARM)

MAG 0.76 0.65

GRW 0.18 0.07

PVC 0.66 0.44

SGP 0.24 0.25

PGH 0.41 0.28

All 0.71 0.37

4 Conclusions

The CAMS reanalysis has been used to produce a 19 year long 3-D CCN climatology, which has been analyzed and evalu-

ated here. Since the reanalysis links modeled aerosols with observed AOD, the resulting total CCN are constrained by AOD420
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observations from satellites. Therefore this climatology offers a unique opportunity to be used for studies of aerosol-cloud

interactions in an observationally constrained global framework.

There are several advantages of using this reanalysis CCN rather than using AOD as a CCN proxy, as was commonly

done in previous observational studies of aerosol-cloud interactions. First, the reanalysis CCN have a global, spatio-temporally

continuous coverage while AOD can only be retrieved for cloud free regions at satellite overpass time. Second, the reanalysis425

CCN are vertically resolved while AOD is a column integrated quantity. This provides the opportunity to retrieve CCN at cloud

base heights, where activation occurs. Third, the reanalysis provides mass concentrations of four CCN relevant aerosol species

which are black carbon, organic matter, sulfate and sea salt. Therefore the chemical and size determined potential of each

aerosol species to act as CCN is taken into account, which is not possible from AOD to that accuracy. Furthermore, hygroscopic

growth of the aerosols is taken into account in the IFS when computing optical properties. This reduces uncertainties associated430

with hygroscopic effects enhancing AOD without actually increasing CCN numbers.

The CCN climatology is available daily from 2003 to 2021, on a Gaussian grid at a resolution of 80 km and 60 vertical

levels. It is derived from the CAMS reanalysis on the corresponding grid (TL255L60), using the models given parameters of

aerosol lognormal size distribution and by applying a modified κ-Köhler framework. For deriving number concentrations from

the given CAMS mass mixing ratios, the same aerosol size distribution for external mixtures was applied that was initially used435

in the IFS aerosol scheme for obtaining aerosol optical properties and converting between aerosol mass and assimilated AOD.

This ensures that the proportionality between CCN and AOD is kept and any improvements of derived reanalysis CCN over

observed AOD can therefore only result from the vertical distribution and the modeled CCN relevant aerosol specifications and

processes.

The resulting CCN distribution shows very clearly the dependence on modeled aerosol processes, such as emission, ad-440

vection and scavenging. Concentrations are pronounced in the NH mid-latitudes where anthropogenic emissions dominate.

Globally, CCN are dominated by sulfate aerosol and organic matter. Black carbon only occurs more dominantly in connection

with wildfires and biomass burning events. Contributions from sea salt are negligible except over the Southern Ocean. Total

CCN and CCN species show realistic distributions and variabilities.

A brief validation with in-situ surface observations has shown, that total CCN are modeled well in the range of CCN445

measurements. However, we found a bias factor of 1.29, compared to the surface in-situ observations used here and an overall

overestimation of the CCN spectrum. This is partly because of too high OM contributions in an already very polluted site. We

suggest more validation in order to find the source of overestimation. This also indicates that the aerosol specification is less

reliable than the total CCN amount, since the species fraction to total aerosol mass is not influenced by the assimilated AOD.

However, even with this rather simplistic 1-moment aerosol scheme, the results show that the simulated total CCN agree450

well with surface observations, with R = 0.71. In comparison to AOD with R = 0.37, the correlation coefficient almost doubles.

This result shows that refining the observed column AOD by a vertical distribution and an aerosol speciation, including effects

of hygroscopicity, clearly improves estimations of CCN. The final outcome is mainly a matter of how realistic the aerosol

processing in a certain model is. In this case, the CCN climatology derived here from the CAMS reanalysis provides a new
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benchmark for improving assessments of aerosol-cloud interactions in particular because of its global coverage and its possible455

usage in Earth System Models.

5 Data availability

The data is freely accessible at https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1 from the World Data Centre

for Climate (WDCC) for registered users. When using the data, please cite as: Block, Karoline (2023). Cloud condensation

nuclei (CCN) numbers derived from CAMS reanalysis EAC4 (Version 1). World Data Center for Climate (WDCC) at DKRZ.460

https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_v1.

Appendix A: The modified Köhler theory

The theory of heterogeneous droplet nucleation is founded on the work of Hilding Köhler (Köhler, 1936) who determined the

equilibrium radius of particles as a function of dry radius rd and relative humidity RH (Seinfeld and Pandis, 2006). We refer to

the formulation of this relationship as the Köhler equation written as (Seinfeld and Pandis, 2006; Pruppacher and Klett, 1997)465

lnS =
4Mwσw/a

RTρwDw
− ϕsενρdMwD3

d

ρwMdD3
w

=
A

Dw
− B

D3
w

(A1)

with A =
4Mwσw/a

RTρw
and B =

ϕsενρdMw

ρwMd
D3

d = KD3
d .

Equation A1 gives saturation ratio S at a specific temperature at which a droplet is in equilibrium with its environment as a

function of the wet droplet diameter Dw, the dry aerosol particle diameter Dd and the hygroscopicity of the aerosol particle.

The curvature parameter A contains the surface tension parameter σw/a, the universal gas constant R, temperature T , the470

molar mass of water Mw and the water density ρw. It shows that at any given temperature the equilibrium vapor pressure over

a curved interface exceeds that of the same substance over a flat surface, and even more so the smaller the droplet is (Seinfeld

and Pandis, 2006).

The hygroscopicity parameter B contains the mass fraction of soluble material ε, the osmotic coefficient ϕs, the number of

ions ν that a molecule dissociated into when dissolved in water, the dry aerosol density ρd and aerosol molar mass Md, the475

molar mass of water Mw and the water density ρw as well as the dry aerosol particle diameter Dd.

As we can see from the B parameter, it cannot be easily obtained and is very complex. In order to characterize the relative

hygroscopicities of individual aerosol constituents, known mixtures, and complex atmospheric aerosols, Petters and Kreiden-

weis (2007) introduced a hygroscopicity parameter κ which simplifies the hygroscopicity parameter B and obviates the need

to determine, or assume, aerosol properties such as dry particle density, molecular weight, and dissociation constants (Petters480

and Kreidenweis, 2007).
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S = αw · exp
(

4Mwσw/a

RTρwDw

)
with

1
αw

= 1 + κ
Vd

Vw
(A2)

with κ being defined through its effect on the water activity of the solution αw, Vd being the volume of the dry particulate

matter and Vw being the volume of the water. With some further reconstructions (see Petters and Kreidenweis (2007)), this

evolves into Eq. 3, stated here again as485

S(Dw) =
D3

w −Dd
3

D3
w −Dd

3(1−κ)
· exp

(
4σw/aMw

RTρwDw

)
with αw =

D3
w −Dd

3

D3
w −Dd

3(1−κ)
. (A3)

Now, we modify this equation as in Pöhlker et al. (2023). Assuming supersaturations s≪ 1, we can approximate lnS =

ln(1 + s)≈ s, and with assuming Dd ≪Dw, it becomes

lnS ≈ s = ln
(

D3
w −Dd

3

D3
w −Dd

3(1−κ)

)
+

(
4Mwσw/a

RTρwDw

)
= ln

(
D3

w −Dd
3

D3
w −Dd

3(1−κ)

)
+

A

Dw
(A4)

s =
A

Dw
− ln

(
D3

w − (1−κ)Dd
3

D3
w −Dd

3

)

=
A

Dw
− ln

(
1 +

κD3
d

D3
w −D3

d

)

≈ A

Dw
− κD3

d

D3
w −D3

d

≈ A

Dw
−κ

D3
d

D3
w

(A5)490

As we can see, even for our set conditions of low supersaturations, this relation holds according to the traditional Köhler

formulation, but with K = κ.

Appendix B: ARM data treatment

CCN evaluation with ARM data was done for daily means of quality checked data. Wood et al. (2017) found that for the GRW

data, there was an abnormal degradation in CCN concentrations from October 2009 to June 2010. The values returned back to495

normal (in comparison to concentrations from the CN counter) after the instrument was maintained thoroughly. They corrected

the data using monthly multiplication factors to obtain a stable ratio between CCN and NC, assuming that the CN counter was

correct. In this study we also use the corrected dataset from Wood et al. (2017).

Special care is taken for the daily mean statistics, which is used to compute CCN at 0.4 % s. To ensure a statistically stable

result, only CCN data retrieved at at least 4 of the 7 s-bins with a minimum of total 96 measurements per day (1/3 of maximum500

possible data coverage) are taken into account. Further we neglect data which seem to have artefacts like a systematic significant
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increase of NC with supersaturation. This was mainly found for GRW data. Therefore, the corrected dataset from Wood et al.

(2017) was only applied on days with good daily statistics.

The comparison to CAMS CCN is done for a single supersaturation at 0.4 % for reasons of convenience. Were there enough

data at 0.4 % s available, the daily average was simply taken from those measurements. Otherwise, the measured data from the505

various s-bins were converted to CCN0.4 as is done in Andreae (2009), using Twomey’s power law (Twomey, 1959; Seinfeld

and Pandis, 2006)

CCN(s) = CCN(s = 1%) · sk. (B1)

Solving Equation B1 for k,

k =
1

lns
· ln

(
CCN0.4

CCN1.0

)
, (B2)510

and transforming it to a more general form, regarding that ln(s = 1%) = 0,

lnCCN2− lnCCN1 = k · (lns2− lns1), (B3)

one obtains this simple form

lnCCN0.4 = k · ln
(

0.4
s

)
+ lnCCN(s). (B4)

Taking the exponential of Equation B4, we obtain the final form, which is used in this study to convert CCN at any measured515

s to 0.4 %

CCN0.4 = CCN(s) ·
(

0.4
s

)k

. (B5)

The exponent k is computed from linear regression between logarithmic s and the respective CCN. The actual behaviour of

CCN with s is not exactly following the power law. A demonstration and a possible extension of the formular is given in

Cohard et al. (1998). This deviation has been accounted for by the standard deviation of k. But since this only adds about 1-3 %520

uncertainty to CCN0.4, it can be neglected compared to the 40 % measurement uncertainty.
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